
Paul E. Black
paul.black@nist.gov

http://samate.nist.gov/

2

Automation doesn’t make the
complexity go away …

3

Automation just hides it in
micron-sized spots.

4

Bad Character
  Application: IC design parser

–  Input: computer chip design, 2D, WYSIWYG
–  Output: network list, plain text

  Failure: one strange character
(V-WIRE_32 (A_[0..31] B_[0..31]) (Y_[0..31])
 ((G_0 (Y_0) T-WIRE (A_0 B_0)) (G_1 (Y_1) T-WIRE (A_1 B_1))
 (G_8 (Y_8) T-GIRE (A_8 B_8)) (G_9 (Y_9) T-WIRE (A_9 B_9))

 (G_10 (Y_10) T-WIRE (A_10 B_10)) (G_11 (Y_11) T-WIRE (A_11 B_11))

–  Could not reproduce on my machine; could on engineer’s
–  Different places or characters on other runs: memory overwrite?

  No hint of code overwrite (common in C)
  A table of where the failure occurred in output files showed that

all had same low-order bits in hexadecimal
  Conclusion: flaky bit in output hardware!

5

A = f(p, s, e)

where A is functional assurance, p is
process quality, s is assessed quality of
software, and e is environment resilience.

6

A = f(p, s, e)

  High assurance software must be
developed with care, for instance:
–  Validated requirements
–  Good, simple system architecture
–  Safety designed- and built in
–  Trained programmers
–  Helpful programming language

7

A = f(p, s, e)

  There are two general kinds of software
assessment:
–  Static analysis

•  e.g. code reviews and scanner tools
•  examines code

–  Testing (dynamic analysis)
•  e.g. simulations, fault injection, and test beds
•  runs code

8

A = f(p, s, e)

  The execution platform can add assurance
that the system will function as intended.

  Some techniques are:
–  Physical enforcement mechanisms
–  Execute in a “sandbox” or virtual machine
–  Monitor execution and react to violations
–  Replicate processes and vote on output

9

Static Analysis
  Handles unfinished code
  Higher level artifacts
  Can find backdoors, e.g.,

full access for user name
“JoshuaCaleb”

  Potentially complete

Testing
  Code not needed, e.g.,

embedded systems
  Has few(er) assumptions
  Covers end-to-end or

system tests
  Assess as-installed

10

11

12

Combinatorial testing for software
  NIST studied software failures in many fields
  Pairwise testing would not find all errors. But a maximum of

6-way testing triggered all faults.

Browser

Medical

Server
NASA

0

20

40

60

80

100

1 2 3 4 5 6

%
 tr

ig
ge

re
d

Interactions

13

A simple example

14

Now How Many Would It Take?

  There are = 120 3-way interactions.

  Naively 120 x 23 = 960 tests.
  Since we can pack 3 triples into each test,

we need no more than 320 tests.
  But each test exercises many triples:

 0 0 0 1 1 1 0 1 0 1

We oughta be able to pack a lot in one test,
so what’s the smallest number we need?

10
3

15

All triples take only 13 tests!

16

Take aways

  Assurance comes from 3 places:
–  Process quality
–  Software assessment
–  Environment resilience

  Testing and static analysis complement
each other

  Combinatorial testing spreads test points
throughout behavior space

